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1 Scope of the Chapter

An optimization problem involves minimizing a function (called the objective function) of several
variables, possibly subject to restrictions on the values of the variables defined by a set of constraint
functions. The functions in the Library are concerned with function minimization only, since the problem
of maximizing a given objective function F(x) is equivalent to minimizing �F xð Þ.
This introduction is only a brief guide to the subject of optimization designed for the casual user. Anyone
with a difficult or protracted problem to solve will find it beneficial to consult a more detailed text, such as
Gill et al. (1981) or Fletcher (1987).

If you are unfamiliar with the mathematics of the subject you may find some sections difficult at first
reading; if so, you should concentrate on Sections 2.1, 2.2, 2.5, 2.6 and 4.

2 Background to the Problems

2.1 Types of Optimization Problems

The solution of optimization problems by a single, all-purpose, method is cumbersome and inefficient.
Optimization problems are therefore classified into particular categories, where each category is defined by
the properties of the objective and constraint functions, as illustrated by some examples below.

Properties of Objective Function Properties of Constraints
Nonlinear Nonlinear
Sums of squares of nonlinear functions Sparse linear
Quadratic Linear
Sums of squares of linear functions Bounds
Linear None

For instance, a specific problem category involves the minimization of a nonlinear objective function
subject to bounds on the variables. In the following sections we define the particular categories of
problems that can be solved by functions contained in this chapter. Not every category is given special
treatment in the current version of the Library; however, the long-term objective is to provide a
comprehensive set of functions to solve problems in all such categories.

2.1.1 Unconstrained minimization

In unconstrained minimization problems there are no constraints on the variables. The problem can be
stated mathematically as follows:

minimize
x

F xð Þ

where x 2 Rn, that is, x ¼ x1; x2; . . . ; xnð ÞT.

2.1.2 Nonlinear least-squares problems

Special consideration is given to the problem for which the function to be minimized can be expressed as a
sum of squared functions. The least-squares problem can be stated mathematically as follows:

minimize
x

f Tf ¼
Xm
i¼1

f 2i xð Þ
( )

, x 2 Rn

where the ith element of the m-vector f is the function f i xð Þ.

2.1.3 Minimization subject to bounds on the variables

These problems differ from the unconstrained problem in that at least one of the variables is subject to a
simple bound (or restriction) on its value, e.g., x5 � 10, but no constraints of a more general form are
present.
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The problem can be stated mathematically as follows:

minimize
x

F xð Þ, x 2 Rn

subject to li � xi � ui, for i ¼ 1; 2; . . . ; n.

This format assumes that upper and lower bounds exist on all the variables. By conceptually allowing
ui ¼ þ1 and li ¼ �1 all the variables need not be restricted.

2.1.4 Minimization subject to linear constraints

A general linear constraint is defined as a constraint function that is linear in more than one of the
variables, e.g., 3x1 þ 2x2 � 4. The various types of linear constraint are reflected in the following
mathematical statement of the problem:

minimize
x

F xð Þ, x 2 Rn

subject to the

equality constraints: aTi x ¼ bi i ¼ 1; 2; . . . ;m1;

inequality constraints: aTi x � bi i ¼ m1 þ 1;m1 þ 2; . . . ;m2;

aTi x � bi i ¼ m2 þ 1;m2 þ 2; . . . ;m3;

range constraints: sj � aTi x � tj i ¼ m3 þ 1;m3 þ 2; . . . ;m4;

j ¼ 1; 2; . . . ;m4 � m3;
bounds constraints: li � xi � ui i ¼ 1; 2; . . . ; n

where each ai is a vector of length n; bi, sj and tj are constant scalars; and any of the categories may be
empty.

Although the bounds on xi could be included in the definition of general linear constraints, we prefer to
distinguish between them for reasons of computational efficiency.

If F xð Þ is a linear function, the linearly-constrained problem is termed a linear programming problem (LP);
if F xð Þ is a quadratic function, the problem is termed a quadratic programming problem (QP). For further
discussion of LP and QP problems, including the dual formulation of such problems, see Dantzig (1963).

2.1.5 Minimization subject to nonlinear constraints

A problem is included in this category if at least one constraint function is nonlinear, e.g.,

x21 þ x3 þ x4 � 2 � 0. The mathematical statement of the problem is identical to that for the linearly-
constrained case, except for the addition of the following constraints:

equality constraints: ci xð Þ ¼ 0 i ¼ 1; 2; . . . ;m5;
inequality constraints: ci xð Þ � 0 i ¼ m5 þ 1;m5 þ 2; . . . ;m6;
range constraints: vj � ci xð Þ � wj i ¼ m6 þ 1;m6 þ 2; . . . ;m7,

j ¼ 1; 2; . . . ;m7 � m6

where each ci is a nonlinear function; vj and wj are constant scalars; and any category may be empty. Note
that we do not include a separate category for constraints of the form ci xð Þ � 0, since this is equivalent to
� ci xð Þ � 0.

Although the general linear constraints could be included in the definition of nonlinear constraints, again
we prefer to distinguish between them for reasons of computational efficiency.

If F xð Þ is a nonlinear function, the nonlinearly-constrained problem is termed a nonlinear programming
problem (NLP). For further discussion of NLP problems, see Gill et al. (1981) or Fletcher (1987).

2.1.6 Minimization subject to bounds on the objective function

In all of the above problem categories it is assumed that

a � F xð Þ � b

where a ¼ �1 and b ¼ þ1. Problems in which a and/or b are finite can be solved by adding an extra
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constraint of the appropriate type (i.e., linear or nonlinear) depending on the form of F xð Þ. Further advice
is given in Section 4.2.

2.2 Geometric Representation and Terminology

To illustrate the nature of optimization problems it is useful to consider the following example in two
dimensions:

F xð Þ ¼ ex1 4x21 þ 2x22 þ 4x1x2 þ 2x2 þ 1
� �

.

(This function is used as the example function in the documentation for the unconstrained functions.)

•

•
-2 -1 . 5 -1 -0 . 5 0 0 . 5 1 1 . 5 2

-2

-1 . 5

-1

-0 . 5

0

0 . 5

1

1 . 5

2

x 1

x
2

F0F1

F2

F3

F4

R

C
B

DA

x̄

x *

x̂

δ1

Figure 1

Figure 1 is a contour diagram of F xð Þ. The contours labelled F0;F1; . . . ;F4 are isovalue contours, or lines

along which the function F xð Þ takes specific constant values. The point x� ¼ 1
2;�1
� �T

is a local
unconstrained minimum, that is, the value of F x�ð Þ ( ¼ 0) is less than at all the neighbouring points. A
function may have several such minima. The lowest of the local minima is termed a global minimum. In
the problem illustrated in Figure 1, x� is the only local minimum. The point �x is said to be a saddle point
because it is a minimum along the line AB, but a maximum along CD.

If we add the constraint x1 � 0 (a simple bound) to the problem of minimizing F xð Þ, the solution remains
unaltered. In Figure 1 this constraint is represented by the straight line passing through x1 ¼ 0, and the
shading on the line indicates the unacceptable region (i.e., x1 < 0). The region in Rn satisfying the
constraints of an optimization problem is termed the feasible region. A point satisfying the constraints is
defined as a feasible point.

If we add the nonlinear constraint c1 xð Þ : x1 þ x2 � x1x2 � 3
2 � 0, represented by the curved shaded line in

Figure 1, then x� is not a feasible point because c1 x�ð Þ < 0. The solution of the new constrained problem

is x̂ ’ 1:1825;�1:7397ð ÞT, the feasible point with the smallest function value (where F x̂ð Þ ’ 3:0607).

2.2.1 Gradient vector

The vector of first partial derivatives of F xð Þ is called the gradient vector, and is denoted by g xð Þ, i.e.,

g xð Þ ¼ @F xð Þ
@x1

;
@F xð Þ
@x2

; . . . ;
@F xð Þ
@xn

� �T
.
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For the function illustrated in Figure 1,

g xð Þ ¼ F xð Þ þ ex1 8x1 þ 4x2ð Þ
ex1 4x2 þ 4x1 þ 2ð Þ

� �
.

The gradient vector is of importance in optimization because it must be zero at an unconstrained minimum
of any function with continuous first derivatives.

2.2.2 Hessian matrix

The matrix of second partial derivatives of a function is termed its Hessian matrix. The Hessian matrix of

F xð Þ is denoted by G xð Þ, and its i; jð Þth element is given by @2F xð Þ=@xi@xj. If F xð Þ has continuous second
derivatives, then G xð Þ must be positive semi-definite at any unconstrained minimum of F.

2.2.3 Jacobian matrix; matrix of constraint normals

In nonlinear least-squares problems, the matrix of first partial derivatives of the vector-valued function f xð Þ
is termed the Jacobian matrix of f xð Þ and its i; jð Þth component is @f i=@xj.

The vector of first partial derivatives of the constraint ci xð Þ is denoted by

ai xð Þ ¼ @ci xð Þ
@x1

;
@ci xð Þ
@x2

; . . . ;
@ci xð Þ
@xn

� �T
.

The matrix whose columns are the vectors aif g is termed the matrix of constraint normals. At a point x̂,
the vector ai x̂ð Þ is orthogonal (normal) to the isovalue contour of ci xð Þ passing through x̂; this relationship
is illustrated for a two-dimensional function in Figure 2.

Figure 2

Note that if ci xð Þ is a linear constraint involving aTi x, then its vector of first partial derivatives is simply the
vector ai.

2.3 Sufficient Conditions for a Solution

All nonlinear functions will be assumed to have continuous second derivatives in the neighbourhood of the
solution.

2.3.1 Unconstrained minimization

The following conditions are sufficient for the point x� to be an unconstrained local minimum of F xð Þ:
(i) g x�ð Þk k ¼ 0; and

(ii) G x�ð Þ is positive-definite,

where gk k denotes the Euclidean length of g.

2.3.2 Minimization subject to bounds on the variables

At the solution of a bounds-constrained problem, variables which are not on their bounds are termed free
variables. If it is known in advance which variables are on their bounds at the solution, the problem can
be solved as an unconstrained problem in just the free variables; thus, the sufficient conditions for a
solution are similar to those for the unconstrained case, applied only to the free variables.
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Sufficient conditions for a feasible point x� to be the solution of a bounds-constrained problem are as
follows:

(i) �g x�ð Þk k ¼ 0; and

(ii) �G x�ð Þ is positive-definite; and

(iii) gj x
�ð Þ < 0; xj ¼ uj; gj x

�ð Þ > 0; xj ¼ lj,

where �g xð Þ is the gradient of F xð Þ with respect to the free variables, and �G xð Þ is the Hessian matrix of
F xð Þ with respect to the free variables. The extra condition (iii) ensures that F xð Þ cannot be reduced by
moving off one or more of the bounds.

2.3.3 Linearly-constrained minimization

For the sake of simplicity, the following description does not include a specific treatment of bounds or
range constraints, since the results for general linear inequality constraints can be applied directly to these
cases.

At a solution x�, of a linearly-constrained problem, the constraints which hold as equalities are called the

active or binding constraints. Assume that there are t active constraints at the solution x�, and let Â

denote the matrix whose columns are the columns of A corresponding to the active constraints, with b̂ the
vector similarly obtained from b; then

ÂTx� ¼ b̂.

The matrix Z is defined as an n� n� tð Þ matrix satisfying:

ÂTZ ¼ 0;
ZTZ ¼ I .

The columns of Z form an orthogonal basis for the set of vectors orthogonal to the columns of Â.

Define

gZ xð Þ ¼ ZTg xð Þ, the projected gradient vector of F xð Þ;

GZ xð Þ ¼ ZTG xð ÞZ, the projected Hessian matrix of F xð Þ.
At the solution of a linearly-constrained problem, the projected gradient vector must be zero, which implies

that the gradient vector g x�ð Þ can be written as a linear combination of the columns of Â, i.e.,

g x�ð Þ ¼
Xt
i¼1

��
i âi ¼ Â��. The scalar ��

i is defined as the Lagrange-multiplier corresponding to the ith

active constraint. A simple interpretation of the ith Lagrange-multiplier is that it gives the gradient of F xð Þ
along the ith active constraint normal; a convenient definition of the Lagrange-multiplier vector (although
not a recommended method for computation) is:

�� ¼ ÂTÂ
� ��1

ÂTg x�ð Þ.

Sufficient conditions for x� to be the solution of a linearly-constrained problem are:

(i) x� is feasible, and ÂTx� ¼ b̂; and

(ii) gZ x�ð Þk k ¼ 0, or equivalently, g x�ð Þ ¼ Â��; and

(iii) GZ x�ð Þ is positive-definite; and

(iv) ��
i > 0 if ��

i corresponds to a constraint âTi x
� � b̂i;

��
i < 0 if ��

i corresponds to a constraint âTi x
� � b̂i.

The sign of ��
i is immaterial for equality constraints, which by definition are always active.
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2.3.4 Nonlinearly-constrained minimization

For nonlinearly-constrained problems, much of the terminology is defined exactly as in the linearly-
constrained case. The set of active constraints at x again means the set of constraints that hold as equalities

at x, with corresponding definitions of ĉ and Â: the vector ĉ xð Þ contains the active constraint functions, and

the columns of Â xð Þ are the gradient vectors of the active constraints. As before, Z is defined in terms of

Â xð Þ as a matrix such that:

ÂTZ ¼ 0;
ZTZ ¼ I

where the dependence on x has been suppressed for compactness.

The projected gradient vector gZ xð Þ is the vector ZTg xð Þ. At the solution x� of a nonlinearly-constrained
problem, the projected gradient must be zero, which implies the existence of Lagrange-multipliers

corresponding to the active constraints, i.e., g x�ð Þ ¼ Â x�ð Þ��.

The Lagrangian function is given by:

L x; �ð Þ ¼ F xð Þ � �Tĉ xð Þ.

We define gL xð Þ as the gradient of the Lagrangian function; GL xð Þ as its Hessian matrix, and ĜL xð Þ as its
projected Hessian matrix, i.e., ĜL ¼ ZTGLZ.

Sufficient conditions for x� to be the solution of a nonlinearly-constrained problem are:

(i) x� is feasible, and ĉ x�ð Þ ¼ 0; and

(ii) gZ x�ð Þk k ¼ 0, or, equivalently, g x�ð Þ ¼ Â x�ð Þ��; and

(iii) ĜL x�ð Þ is positive-definite; and

(iv) ��
i > 0 if ��

i corresponds to a constraint of the form ĉi � 0.

The sign of ��
i is immaterial for equality constraints, which by definition are always active.

Note that condition (ii) implies that the projected gradient of the Lagrangian function must also be zero at

x�, since the application of ZT annihilates the matrix Â x�ð Þ.

2.4 Background to Optimization Methods

All the algorithms contained in this chapter generate an iterative sequence x kð Þ
n o

that converges to the

solution x� in the limit, except for some special problem categories (i.e., linear and quadratic
programming). To terminate computation of the sequence, a convergence test is performed to determine
whether the current estimate of the solution is an adequate approximation. The convergence tests are
discussed in Section 2.6.

Most of the methods construct a sequence x kð Þ
n o

satisfying:

x kþ1ð Þ ¼ x kð Þ þ � kð Þp kð Þ,

where the vector p kð Þ is termed the direction of search, and � kð Þ is the steplength. The steplength � kð Þ is

chosen so that F x kþ1ð Þ
� �

< F x kð Þ
� �

and is computed using one of the techniques for one-dimensional

optimization referred to in Section 2.4.1.

2.4.1 One-dimensional optimization

The Library contains two special functions for minimizing a function of a single variable. Both functions
are based on safeguarded polynomial approximation. One function requires function evaluations only and
fits a quadratic polynomial whilst the other requires function and gradient evaluations and fits a cubic
polynomial. See Section 4.1 of Gill et al. (1981).
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2.4.2 Methods for unconstrained optimization

The distinctions among methods arise primarily from the need to use varying levels of information about
derivatives of F xð Þ in defining the search direction. We describe three basic approaches to unconstrained
problems, which may be extended to other problem categories. Since a full description of the methods
would fill several volumes, the discussion here can do little more than allude to the processes involved, and
direct you to other sources for a full explanation.

(a) Newton-type Methods (Modified Newton Methods)

Newton-type methods use the Hessian matrix G x kð Þ
� �

, or a finite-difference approximation to

G x kð Þ
� �

, to define the search direction. The functions in the Library either require a function that

computes the elements of G x kð Þ
� �

directly, or they approximate G x kð Þ
� �

by finite-differences.

Newton-type methods are the most powerful methods available for general problems and will find the
minimum of a quadratic function in one iteration. See Sections 4.4 and 4.5.1 of Gill et al. (1981).

(b) Quasi-Newton Methods

Quasi-Newton methods approximate the Hessian G x kð Þ
� �

by a matrix B kð Þ which is modified at each

iteration to include information obtained about the curvature of F along the current search direction

p kð Þ. Although not as robust as Newton-type methods, quasi-Newton methods can be more efficient

because G x kð Þ
� �

is not computed directly, or approximated by finite-differences. Quasi-Newton

methods minimize a quadratic function in n iterations. See Section 4.5.2 of Gill et al. (1981).

(c) Conjugate-Gradient Methods

Unlike Newton-type and quasi-Newton methods, conjugate-gradient methods do not require the
storage of an n by n matrix and so are ideally suited to solve large problems. Conjugate-gradient type
methods are not usually as reliable or efficient as Newton-type, or quasi-Newton methods. See
Section 4.8.3 of Gill et al. (1981).

2.4.3 Methods for nonlinear least-squares problems

These methods are similar to those for unconstrained optimization, but exploit the special structure of the
Hessian matrix to give improved computational efficiency.

Since

F xð Þ ¼
Xm
i¼1

f 2i xð Þ

the Hessian matrix G xð Þ is of the form

G xð Þ ¼ 2 J xð ÞTJ xð Þ þ
Xm
i¼1

f i xð ÞGi xð Þ
 !

,

where J xð Þ is the Jacobian matrix of f xð Þ, and Gi xð Þ is the Hessian matrix of f i xð Þ.

In the neighbourhood of the solution, f xð Þk k is often small compared to J xð ÞTJ xð Þ
��� ��� (for example, when

f xð Þ represents the goodness-of-fit of a nonlinear model to observed data). In such cases, 2J xð ÞTJ xð Þ may
be an adequate approximation to G xð Þ, thereby avoiding the need to compute or approximate second
derivatives of f i xð Þf g. See Section 4.7 of Gill et al. (1981).

2.4.4 Methods for handling constraints

Bounds on the variables are dealt with by fixing some of the variables on their bounds and adjusting the
remaining free variables to minimize the function. By examining estimates of the Lagrange-multipliers it
is possible to adjust the set of variables fixed on their bounds so that eventually the bounds active at the
solution should be correctly identified. This type of method is called an active set method. One feature
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of such methods is that, given an initial feasible point, all approximations x kð Þ are feasible. This approach
can be extended to general linear constraints. At a point, x, the set of constraints which hold as equalities
being used to predict, or approximate, the set of active constraints is called the working set.

Nonlinear constraints are more difficult to handle. If at all possible, it is usually beneficial to avoid
including nonlinear constraints during the formulation of the problem. The methods currently implemented
in the Library handle nonlinearly constrained problems by transforming them into a sequence of quadratic

programming problems. A feature of such methods is that x kð Þ is not guaranteed to be feasible except in
the limit, and this is certainly true of the functions currently in the Library. See Chapter 6, particularly
Sections 6.4 and 6.5, of Gill et al. (1981).

Anyone interested in a detailed description of methods for optimization should consult the references.

2.5 Scaling

Scaling (in a broadly defined sense) often has a significant influence on the performance of optimization
methods. Since convergence tolerances and other criteria are necessarily based on an implicit definition of
‘small’ and ‘large’, problems with unusual or unbalanced scaling may cause difficulties for some
algorithms. Although there are currently no user-callable scaling functions in the Library, scaling is
automatically performed by default in the functions which solve sparse LP, QP or NLP problems and in
some newer dense solver functions. The following sections present some general comments on problem
scaling.

2.5.1 Transformation of variables

One method of scaling is to transform the variables from their original representation, which may reflect
the physical nature of the problem, to variables that have certain desirable properties in terms of
optimization. It is generally helpful for the following conditions to be satisfied:

(i) the variables are all of similar magnitude in the region of interest;

(ii) a fixed change in any of the variables results in similar changes in F xð Þ. Ideally, a unit change in any
variable produces a unit change in F xð Þ;

(iii) the variables are transformed so as to avoid cancellation error in the evaluation of F xð Þ.
Normally, you should restrict yourself to linear transformations of variables, although occasionally
nonlinear transformations are possible. The most common such transformation (and often the most
appropriate) is of the form

xnew ¼ Dxold,

where D is a diagonal matrix with constant coefficients. Our experience suggests that more use should be
made of the transformation

xnew ¼ Dxold þ v,

where v is a constant vector.

Consider, for example, a problem in which the variable x3 represents the position of the peak of a Gaussian
curve to be fitted to data for which the extreme values are 150 and 170; therefore x3 is known to lie in the
range 150–170. One possible scaling would be to define a new variable �x3, given by

�x3 ¼
x3
170

.

A better transformation, however, is given by defining �x3 as

�x3 ¼
x3 � 160

10
.

Frequently, an improvement in the accuracy of evaluation of F xð Þ can result if the variables are scaled
before the functions to evaluate F xð Þ are coded. For instance, in the above problem just mentioned of
Gaussian curve-fitting, x3 may always occur in terms of the form x3 � xmð Þ, where xm is a constant
representing the mean peak position.
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2.5.2 Scaling the objective function

The objective function has already been mentioned in the discussion of scaling the variables. The solution
of a given problem is unaltered if F xð Þ is multiplied by a positive constant, or if a constant value is added
to F xð Þ. It is generally preferable for the objective function to be of the order of unity in the region of

interest; thus, if in the original formulation F xð Þ is always of the order of 10þ5 (say), then the value of

F xð Þ should be multiplied by 10�5 when evaluating the function within an optimization function. If a
constant is added or subtracted in the computation of F xð Þ, usually it should be omitted, i.e., it is better to

formulate F xð Þ as x21 þ x22 rather than as x21 þ x22 þ 1000 or even x21 þ x22 þ 1. The inclusion of such a
constant in the calculation of F xð Þ can result in a loss of significant figures.

2.5.3 Scaling the constraints

A ‘well scaled’ set of constraints has two main properties. Firstly, each constraint should be well-
conditioned with respect to perturbations of the variables. Secondly, the constraints should be balanced
with respect to each other, i.e., all the constraints should have ‘equal weight’ in the solution process.

The solution of a linearly- or nonlinearly-constrained problem is unaltered if the ith constraint is multiplied
by a positive weight wi. At the approximation of the solution determined by a Library function, any active
linear constraints will (in general) be satisfied ‘exactly’ (i.e., to within the tolerance defined by machine
precision) if they have been properly scaled. This is in contrast to any active nonlinear constraints, which

will not (in general) be satisfied ‘exactly’ but will have ‘small’ values (for example, ĉ1 x�ð Þ ¼ 10�8,

ĉ2 x�ð Þ ¼ �10�6, and so on). In general, this discrepancy will be minimized if the constraints are weighted
so that a unit change in x produces a similar change in each constraint.

A second reason for introducing weights is related to the effect of the size of the constraints on the
Lagrange-multiplier estimates and, consequently, on the active set strategy. This means that different sets
of weights may cause an algorithm to produce different sequences of iterates. Additional discussion is
given in Gill et al. (1981).

2.6 Analysis of Computed Results

2.6.1 Convergence criteria

The convergence criteria inevitably vary from function to function, since in some cases more information
is available to be checked (for example, is the Hessian matrix positive-definite?), and different checks need
to be made for different problem categories (for example, in constrained minimization it is necessary to
verify whether a trial solution is feasible). Nonetheless, the underlying principles of the various criteria are
the same; in non-mathematical terms, they are:

(i) is the sequence x kð Þ
n o

converging?

(ii) is the sequence F kð Þ
n o

converging?

(iii) are the necessary and sufficient conditions for the solution satisfied?

The decision as to whether a sequence is converging is necessarily speculative. The criterion used in the
present functions is to assume convergence if the relative change occurring between two successive
iterations is less than some prescribed quantity. Criterion (iii) is the most reliable but often the conditions
cannot be checked fully because not all the required information may be available.

2.6.2 Checking results

Little a priori guidance can be given as to the quality of the solution found by a nonlinear optimization
algorithm, since no guarantees can be given that the methods will not fail. Therefore, you should always
check the computed solution even if the function reports success. Frequently a ‘solution’ may have been
found even when the function does not report a success. The reason for this apparent contradiction is that
the function needs to assess the accuracy of the solution. This assessment is not an exact process and
consequently may be unduly pessimistic. Any ‘solution’ is in general only an approximation to the exact
solution, and it is possible that the accuracy you have specified is too stringent.
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Further confirmation can be sought by trying to check whether or not convergence tests are almost
satisfied, or whether or not some of the sufficient conditions are nearly satisfied. When it is thought that a
function has returned a value of fail.code other than NE_NOERROR only because the requirements for
‘success’ were too stringent it may be worth restarting with increased convergence tolerances.

For nonlinearly-constrained problems, check whether the solution returned is feasible, or nearly feasible; if
not, the solution returned is not an adequate solution.

Confidence in a solution may be increased by re-solving the problem with a different initial approximation
to the solution. See Section 8.3 of Gill et al. (1981) for further information.

2.6.3 Monitoring progress

Many of the functions in the chapter have facilities to allow you to monitor the progress of the
minimization process, and you are encouraged to make use of these facilities. Monitoring information can
be a great aid in assessing whether or not a satisfactory solution has been obtained, and in indicating
difficulties in the minimization problem or in the ability of the function to cope with the problem.

The behaviour of the function, the estimated solution and first derivatives can help in deciding whether a
solution is acceptable and what to do in the event of a return with a fail.code other than NE_NOERROR.

2.6.4 Confidence intervals for least-squares solutions

When estimates of the arguments in a nonlinear least-squares problem have been found, it may be
necessary to estimate the variances of the arguments and the fitted function. These can be calculated from
the Hessian of F xð Þ at the solution.

In many least-squares problems, the Hessian is adequately approximated at the solution by G ¼ 2JTJ (see
Section 2.4.3). The Jacobian, J , or a factorization of J is returned by all the comprehensive least-squares
functions and, in addition, a function is available in the Library to estimate variances of the arguments

following the use of most of the nonlinear least-squares functions, in the case that G ¼ 2JTJ is an
adequate approximation.

Let H be the inverse of G, and S be the sum of squares, both calculated at the solution �x; an unbiased
estimate of the variance of the ith argument xi is

var �xi ¼
2S

m� n
Hii

and an unbiased estimate of the covariance of �xi and �xj is

covar �xi;�xj
� �

¼ 2S

m� n
Hij.

If x� is the true solution, then the 100 1� �ð Þ% confidence interval on �x is

�xi �
ffiffiffiffiffiffiffiffiffiffiffi
var �xi

p
:t 1��=2;m�nð Þ < x�i < �xi þ

ffiffiffiffiffiffiffiffiffiffiffi
var �xi

p
:t 1��=2;m�nð Þ, i ¼ 1; 2; . . . ; n

where t 1��=2;m�nð Þ is the 100 1� �ð Þ=2 percentage point of the t-distribution with m� n degrees of
freedom.

In the majority of problems, the residuals f i, for i ¼ 1; 2; . . . ;m, contain the difference between the values
of a model function � z; xð Þ calculated for m different values of the independent variable z, and the
corresponding observed values at these points. The minimization process determines the arguments, or
constants x, of the fitted function � z; xð Þ. For any value, �z, of the independent variable z, an unbiased
estimate of the variance of � is

var � ¼ 2S

m� n

Xn
i¼1

Xn
j¼1

@�

@xi

� �
�z

@�

@xj

� �
�z

Hij.

The 100 1� �ð Þ% confidence interval on F at the point �z is

� �z;�xð Þ �
ffiffiffiffiffiffiffiffiffiffi
var �

p
:t �=2;m�nð Þ < � �z; x�ð Þ < � �z;�xð Þ þ

ffiffiffiffiffiffiffiffiffiffi
var �

p
:t �=2;m�nð Þ.

For further details on the analysis of least-squares solutions see Bard (1974) and Wolberg (1967).
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3 Optional Facilities

The comments in this section do not apply to functions introduced at Mark 8, viz.
nag_opt_sparse_convex_qp_solve (e04nqc), nag_opt_sparse_nlp_solve (e04vhc) and nag_opt_nlp_solve
(e04wdc). For details of their optional facilities please refer to their individual documents.

The optimization functions of this chapter provide a range of optional facilities: these offer the possibility
of fine control over many of the algorithmic arguments and the means of adjusting the level and nature of
the printed results.

Control of these optional facilities is exercised by a structure of type Nag_E04_Opt, the members of the
structure being optional input or output arguments to the function. After declaring the structure variable,
which is named options in this manual, you must initialize the structure by passing its address in a call to
the utility function nag_opt_init (e04xxc). Selected members of the structure may then be set to your
required values and the address of the structure passed to the optimization function. Any member which
has not been set by you will indicate to the optimization function that the default value should be used for
this argument. A more detailed description of this process is given below in Section 3.4.

Examples of arguments to the algorithms which may be altered from their default value are linesearch_tol
or optim_tol (these control the accuracy to which the linesearch and final solution are computed,
respectively), and max_iter (which limits the number of iterations the algorithm will perform). Certain
members of options supply further details concerning the final results, for example the member pointer
state gives the status of the constraints, while in the LP and QP solvers the member pointers lambda and
ax also give the final values of the Lagrange-multipliers and the linear constraints respectively.

The optimization process may sometimes terminate before a satisfactory answer has been found, for
instance when the limit on the number of iterations has been reached. In such cases you may wish to re-
enter the function making use of the information already obtained. Functions nag_opt_conj_grad (e04dgc),
nag_opt_lsq_no_deriv (e04fcc) and nag_opt_lsq_deriv (e04gbc) can simply be re-entered but the functions
nag_opt_bounds_no_deriv (e04jbc), nag_opt_bounds_deriv (e04kbc), nag_opt_lp (e04mfc),
nag_opt_lin_lsq (e04ncc), nag_opt_qp (e04nfc), nag_opt_sparse_convex_qp (e04nkc), nag_opt_nlp
(e04ucc) and nag_opt_nlin_lsq (e04unc) have a structure member which needs to be set appropriately if
the function is to make use of information from the previous call. The member is init_state in functions
nag_opt_bounds_no_deriv (e04jbc) and nag_opt_bounds_deriv (e04kbc), and start in the other functions
listed. (Please note that nag_opt_bounds_no_deriv (e04jbc), nag_opt_bounds_deriv (e04kbc),
nag_opt_sparse_convex_qp (e04nkc) and nag_opt_nlp (e04ucc) are scheduled for withdrawal.)

3.1 Control of Printed Output

Results from the optimization process are printed by default on the stdout (standard output) stream.
These include the results after each iteration and the final results at termination of the search process. The
amount of detail printed out may be increased or decreased by setting the optional argument print_level,
i.e., the structure member Print Level. This member is an enum type, Nag_PrintType, and an example
value is Nag_Soln which when assigned to Print Level will cause the optimization function to print only
the final result; all intermediate results printout is suppressed.

If the results printout is not in the desired form then it may be switched off, by setting
Print Level ¼ NagNoPrint, or alternatively you can supply your own function to printout or make use
of both the intermediate and final results. Such a function would be assigned to the pointer to function
member print_fun; the user-defined function would then be called in preference to the NAG print
function.

In addition to the results, the values of the arguments to the optimization function are printed out when the
function is entered; the Boolean member list may be set to Nag_False if this listing is not required.

Printing may be output to a named file rather than to stdout by providing the name of the file in the
options character array member outfile. Error messages will still appear on stderr, if
fail:print ¼ NagTrue or the fail argument is not supplied (see the Section 2.6 of the Essential
Introduction for details of error handling within the library).
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3.2 Memory Management

The options structure contains a number of pointers for the input of data and the output of results. The
optimization functions will manage the allocation of memory to these pointers; when all calls to these
functions have been completed then a utility function nag_opt_free (e04xzc) can be called by your
program to free the NAG allocated memory which is no longer required.

If the calling function is part of a larger program then this utility function allows you to conserve memory
by freeing the NAG allocated memory before the options structure goes out of scope. nag_opt_free
(e04xzc) can free all NAG allocated memory in a single call, but it may also be used selectively. In this
case the memory assigned to certain pointers may be freed leaving the remaining memory still available;
pointers to this memory and the results it contains may then be passed to other functions in your program
without passing the structure and all its associated memory.

Although the NAG C Library optimization functions will manage all memory allocation and deallocation,
it may occasionally be necessary for you to allocate memory to the options structure from within the
calling program before entering the optimization function.

An example of this is where you store information in a file from an optimization run and at a later date
wish to use that information to solve a similar optimization problem or the same one under slightly
changed conditions. The pointer state, for example, would need to be allocated memory by you before the
status of the constraints could be assigned from the values in the file. The member init_state would need
to be appropriately set for functions nag_opt_bounds_no_deriv (e04jbc) and nag_opt_bounds_deriv
(e04kbc) and member start for functions nag_opt_lp (e04mfc) and nag_opt_qp (e04nfc). (Please note that
nag_opt_bounds_no_deriv (e04jbc) and nag_opt_bounds_deriv (e04kbc) are scheduled for withdrawal.)

If you assign memory to a pointer within the options structure then the deallocation of this memory must
also be performed by you; the utility function nag_opt_free (e04xzc) will only free memory allocated by
NAG C Library optimization functions. When your allocated memory is freed using the standard C library
function free() then the pointer should be set to NULL immediately afterwards; this will avoid possible
confusion in the NAG memory management system if a NAG function is subsequently entered.

3.3 Reading Optional Argument Values From a File

Optional argument values may be placed in a file by you and the function nag_opt_read (e04xyc) used to
read the file and assign the values to the options structure. This utility function permits optional argument
values to be supplied in any order and altered without recompilation of the program. The values read are
also checked before assignment to ensure they are in the correct range for the specified option. Pointers
within the options structure cannot be assigned to using nag_opt_read (e04xyc).

3.4 Method of Setting Optional Arguments

The method of using and setting the optional arguments is:

step 1 declare a structure of type Nag_E04_Opt.

step 2 initialize the structure using nag_opt_init (e04xxc).

step 3 assign values to the structure.

step 4 pass the address of the structure to the optimization function.

step 5 call nag_opt_free (e04xzc) to free any memory allocated by the optimization function.

If after step 4, it is wished to re-enter the optimization function, then step 3 can be returned to directly, i.e.,
step 5 need only be executed when all calls to the optimization function have been made.

At step 3, values can be assigned directly and/or by means of the option file reading function nag_opt_read
(e04xyc). If values are only assigned from the options file then step 2 need not be performed as
nag_opt_read (e04xyc) will automatically call nag_opt_init (e04xxc) if the structure has not been
initialized.
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4 Recommendations on Choice and Use of Available Functions

The choice of function depends on several factors: the type of problem (unconstrained, etc.); the level of
derivative information available (function values only, etc.); your experience (there are easy-to-use versions
of some functions); whether or not storage is a problem; and whether computational time has a high
priority. Not all choices are catered for in the current version of the Library.

4.1 Service Functions

One of the most common errors in the use of optimization functions is that user-supplied functions do not
evaluate the relevant partial derivatives correctly. Because exact gradient information normally enhances
efficiency in all areas of optimization, you should be encouraged to provide analytical derivatives
whenever possible. However, mistakes in the computation of derivatives can result in serious and obscure
run-time errors. Consequently, service functions are provided to perform an elementary check on the user-
supplied gradients. These functions are inexpensive to use in terms of the number of calls they require to
user-supplied functions.

The appropriate checking functions are as follows:

Minimization function Checking function(s)

nag_opt_bounds_2nd_deriv (e04lbc) nag_opt_check_deriv (e04hcc) and nag_opt_check_2nd_deriv
(e04hdc)

nag_opt_lsq_deriv (e04gbc) nag_opt_lsq_check_deriv (e04yac)

It should be noted that functions nag_opt_nlp_solve (e04wdc), nag_opt_nlp_sparse (e04ugc) and
nag_opt_sparse_nlp_solve (e04vhc) each incorporate a check on the gradients being supplied. This
involves verifying the gradients at the first point that satisfies the linear constraints and bounds. There is
also an option to perform a more reliable (but more expensive) check on the individual gradient elements
being supplied. Note that the checks are not infallible.

A second type of service function computes a set of finite-differences to be used when approximating first
derivatives. Such differences are required as input arguments by some functions that use only function
evaluations.

nag_opt_lsq_covariance (e04ycc) estimates selected elements of the variance-covariance matrix for the
computed regression arguments following the use of a nonlinear least-squares function.

nag_opt_estimate_deriv (e04xac) estimates the gradient and Hessian of a function at a point, given a
function to calculate function values only, or estimates the Hessian of a function at a point, given a
function to calculate function and gradient values.

4.2 Function Evaluations at Infeasible Points

All the functions for constrained problems will ensure that any evaluations of the objective function occur
at points which approximately satisfy any simple bounds or linear constraints. Satisfaction of such
constraints is only approximate because functions which estimate derivatives by finite-differences may
require function evaluations at points which just violate such constraints even though the current iteration
just satisfies them.

There is no attempt to ensure that the current iteration satisfies any nonlinear constraints. If you wish to
prevent your objective function being evaluated outside some known region (where it may be undefined or
not practically computable), you may try to confine the iteration within this region by imposing suitable
simple bounds or linear constraints (but beware as this may create new local minima where these
constraints are active).

Note also that some functions allow the user-supplied function to return the argument (comm ! flag) with
a negative value to force an immediate clean exit from the minimization function when the objective
function (or nonlinear constraints where appropriate) cannot be evaluated. Please note that
nag_opt_sparse_convex_qp_solve (e04nqc), nag_opt_sparse_nlp_solve (e04vhc) and nag_opt_nlp_solve
(e04wdc) use the user-supplied function imode instead of comm ! flag.
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4.3 Related Problems

Apart from the standard types of optimization problem, there are other related problems which can be
solved by functions in this or other chapters of the Library.

nag_ip_bb (h02bbc) solves dense integer LP problems.

Several functions in Chapter f04 solve linear least-squares problems, i.e., minimize
Xm
i¼1

ri xð Þ2 where

ri xð Þ ¼ bi �
Xn
j¼1

aijxj.

nag_lone_fit (e02gac) solves an overdetermined system of linear equations in the l1 norm, i.e., minimizesXm
i¼1

ri xð Þj j, with ri as above.

nag_linf_fit (e02gcc) solves an overdetermined system of linear equations in the l1 norm, i.e., minimizes
max

i
ri xð Þj j, with ri as above.

5 Decision Trees

Tree 1: Selection chart for unconstrained problems

Only one variable?
yes

Are first derivatives available?
yes

e04bbc

no

e04abc

no

Does the function have many
discontinuities? yes

e04ccc

no

Is store size a problem?
yes

e04dgc

no

Is the function a sum of squares?
yes

Are first derivatives available?
yes

e04gbc

no

e04fcc

no

Are first derivatives available?
yes

Are second derivatives available?
yes

e04lbc

no

e04wdc, e04ugc or e04vhc

no

e04wdc, e04ugc and e04vhc
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Tree 2: Selection chart for bound-constrained, linearly-constrained and nonlinearly-constrained
problems

Are there any nonlinear
constraints? yes

Is the objective function a
sum of squares? (A least-
squares problem)

yes
e04unc

no

Are the constraints sparse?
yes

e04ugc and e04vhc

no

e04wdc

no

Is the objective function
linear? (An LP problem) yes

Tree 3

no

Is the objective function
quadratic? (A QP or least-
squares problem)

yes
Is the problem a least-squares
problem? yes

e04ncc

no

Tree 4

no

Is the objective function a
sum of squares? (A least-
squares problem)

yes
e04unc

no

Are the constraints simple
bounds? yes

Are the first derivatives
available? yes

Are the second derivatives
available? yes

e04lbc

no

e04wdc, e04ugc or e04vhc

no

e04wdc, e04ugc or e04vhc

no

e04wdc, e04ugc or e04vhc

Tree 3: Linear programming

Is the objective function linear (an LP
problem) and is the linear constraint
matrix sparse?

yes
e04nqc or e04vhc

no

e04mfc

Tree 4: Quadratic programming

Is the linear constraint matrix sparse?
yes

e04nqc or e04vhc

no

Is the problem a convex QP problem?
yes

e04ncc

no

e04nfc

6 Index

Constrained minimum of a sum of squares, nonlinear constraints,
using function values and optionally first derivatives, sequential QP mthod,

forward communication (dense) ...................................................... nag_opt_nlin_lsq (e04unc)
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Convex QP problem or linearly-constrained linear least-squares problem (dense)
nag_opt_lin_lsq (e04ncc)

Linear programming (LP) problem (dense) ............................................................ nag_opt_lp (e04mfc)
LP or QP problem (sparse) .......................................... nag_opt_sparse_convex_qp_solve (e04nqc)
Minimum, function of one variable,

using first derivative ..................................................................... nag_opt_one_var_deriv (e04bbc)
using function values only ...................................................... nag_opt_one_var_no_deriv (e04abc)

Minimum, function of several variables, nonlinear constraints (comprehensive),
using function values and optionally first derivatives, sequential QP method,

forward communication (dense) ...................................................... nag_opt_nlp_solve (e04wdc)
forward communication (sparse) ................................................... nag_opt_nlp_sparse (e04ugc)
forward communication (sparse) ....................................... nag_opt_sparse_nlp_solve (e04vhc)

Minimum, function of several variables, simple bounds (comprehensive),
using first and second derivatives, modified Newton algorithm

nag_opt_bounds_2nd_deriv (e04lbc)
Option setting,

initialization function ....................................................................................... nag_opt_init (e04xxc)
memory freeing function ................................................................................. nag_opt_free (e04xzc)
read options from a text file ........................................................................... nag_opt_read (e04xyc)

Quadratic programming (QP) problem (dense) ...................................................... nag_opt_qp (e04nfc)
Service functions:

check user’s function for calculating:
first derivatives of function ...................................................... nag_opt_check_deriv (e04hcc)
Jacobian of first derivatives ................................................ nag_opt_lsq_check_deriv (e04yac)
second derivatives of function ............................................. nag_opt_check_2nd_deriv (e04hdc)

convert MPSX data file defining LP or QP problem to format required by nag_opt_sparse_convex_qp
(e04nkc) .................................................................................... nag_opt_sparse_mps_free (e04myc)
convert MPSX data file defining LP or QP problem to format required by
nag_opt_sparse_convex_qp_solve (e04nqc) ........................... nag_opt_sparse_mps_read (e04mzc)
covariance matrix for nonlinear least-squares problem ............ nag_opt_lsq_covariance (e04ycc)
determine Jacobian sparsity structure before a call of nag_opt_sparse_nlp_solve (e04vhc)

nag_opt_sparse_nlp_jacobian (e04vjc)
estimate gradient and/or Hessian of a function ........................ nag_opt_estimate_deriv (e04xac)
Initialization function for:

nag_opt_sparse_convex_qp_solve (e04nqc) ......... nag_opt_sparse_convex_qp_init (e04npc)
nag_opt_sparse_nlp_solve (e04vhc) .................................... nag_opt_sparse_nlp_init (e04vgc)
nag_opt_nlp_solve (e04wdc) ............................................................ nag_opt_nlp_init (e04wcc)

retrieve Integer optional parameter values used by:
nag_opt_sparse_convex_qp_solve (e04nqc)

nag_opt_sparse_convex_qp_option_get_integer (e04nxc)
nag_opt_sparse_convex_qp_solve (e04nqc)

nag_opt_sparse_convex_qp_option_get_double (e04nyc)
nag_opt_sparse_nlp_solve (e04vhc) ...... nag_opt_sparse_nlp_option_get_integer (e04vrc)
nag_opt_sparse_nlp_solve (e04vhc) ......... nag_opt_sparse_nlp_option_get_double (e04vsc)
nag_opt_nlp_solve (e04wdc) ................................. nag_opt_nlp_option_get_integer (e04wkc)
nag_opt_nlp_solve (e04wdc) ................................. nag_opt_nlp_option_get_double (e04wlc)

supply Integer optional parameter values to:
nag_opt_sparse_convex_qp_solve (e04nqc)

nag_opt_sparse_convex_qp_option_set_integer (e04ntc)
nag_opt_sparse_convex_qp_solve (e04nqc)

nag_opt_sparse_convex_qp_option_set_double (e04nuc)
nag_opt_sparse_nlp_solve (e04vhc) ...... nag_opt_sparse_nlp_option_set_integer (e04vmc)
nag_opt_sparse_nlp_solve (e04vhc) ......... nag_opt_sparse_nlp_option_set_double (e04vnc)
nag_opt_nlp_solve (e04wdc) ................................. nag_opt_nlp_option_set_integer (e04wgc)
nag_opt_nlp_solve (e04wdc) ................................. nag_opt_nlp_option_set_double (e04whc)

supply optional parameter values from external file for:
nag_opt_sparse_convex_qp_solve (e04nqc)

nag_opt_sparse_convex_qp_option_set_file (e04nrc)
nag_opt_sparse_nlp_solve (e04vhc) ............ nag_opt_sparse_nlp_option_set_file (e04vkc)
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nag_opt_nlp_solve (e04wdc) ....................................... nag_opt_nlp_option_set_file (e04wec)
supply optional parameter values to:

nag_opt_sparse_convex_qp_solve (e04nqc)
nag_opt_sparse_convex_qp_option_set_string (e04nsc)

nag_opt_sparse_nlp_solve (e04vhc) ......... nag_opt_sparse_nlp_option_set_string (e04vlc)
nag_opt_nlp_solve (e04wdc) ................................. nag_opt_nlp_option_set_string (e04wfc)

Unconstrained minimum of a sum of squares (comprehensive):
using first derivatives,

combined Gauss–Newton and quasi-Newton algorithm ............... nag_opt_lsq_deriv (e04gbc)
using function values only,

combined Gauss–Newton and modified Newton algorithm ... nag_opt_lsq_no_deriv (e04fcc)
Unconstrained minimum, function of several variables (comprehensive):

using first derivatives, pre-conditioned conjugate gradient algorithm nag_opt_conj_grad (e04dgc)
using function values only, simplex algorithm ....................................... nag_opt_simplex (e04ccc)

7 Functions Withdrawn or Scheduled for Withdrawal

Withdrawn
Function

Mark of
Withdrawal

Replacement Function(s)

nag_opt_bounds_no_deriv (e04jbc) 10 nag_opt_nlp_solve (e04wdc)
nag_opt_bounds_deriv (e04kbc) 10 nag_opt_nlp_solve (e04wdc)
nag_opt_sparse_convex_qp (e04nkc) 10 nag_opt_sparse_convex_qp_solve (e04nqc)
nag_opt_nlp (e04ucc) 10 nag_opt_nlp_solve (e04wdc)
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